CLCS
Function

logand, logandc1, logandc2, logeqv, logior, lognand, lognor, lognot, logorc1, logorc2, logxor

logand &rest integers ⇒ result-integer

logandc 1integer-1 integer-2 result-integer logandc 2integer-1 integer-2 result-integer logeqv &rest integers ⇒ result-integer

logior &rest integers ⇒ result-integer

lognand integer-1 integer-2result-integer

lognor integer-1 integer-2result-integer

lognot integerresult-integer

logorc 1integer-1 integer-2 result-integer logorc 2integer-1 integer-2 result-integer logxor &rest integers ⇒ result-integer

Arguments and Values

integersintegers.
integeran integer.
integer-1an integer.
integer-2an integer.
result-integeran integer.

Description

The functions logandc1, logandc2, logand, logeqv, logior, lognand, lognor, lognot, logorc1, logorc2, and logxor perform bit-wise logical operations on their arguments, that are treated as if they were binary.

Figure 12–17 lists the meaning of each of the functions. Where an ‘identity’ is shown, it indicates the value yielded by the function when no arguments are supplied.

  Function  Identity  Operation performed                            logandc1  —       and complement of integer-1 with integer-2     logandc2  —       and integer-1 with complement of integer-2     logand    -1        and                                            logeqv    -1        equivalence (exclusive nor)                    logior    0         inclusive or                                   lognand   —       complement of integer-1 and integer-2          lognor    —       complement of integer-1 or integer-2           lognot    —       complement                                     logorc1   —       or complement of integer-1 with integer-2      logorc2   —       or integer-1 with complement of integer-2      logxor    0         exclusive or                                

Figure 12–17: Bit-wise Logical Operations on Integers

Negative integers are treated as if they were in two’s-complement notation.

Examples

 (logior 1 2 4 8) ⇒  15
 (logxor 1 3 7 15) ⇒  10
 (logeqv) ⇒  -1
 (logand 16 31) ⇒  16
 (lognot 0) ⇒  -1
 (lognot 1) ⇒  -2
 (lognot -1) ⇒  0
 (lognot (1+ (lognot 1000))) ⇒  999

;;; In the following example, m is a mask.  For each bit in
;;; the mask that is a 1, the corresponding bits in x and y are
;;; exchanged.  For each bit in the mask that is a 0, the 
;;; corresponding bits of x and y are left unchanged.
 (flet ((show (m x y)
          (format t "~
                  m x y)))
   (let ((m #o007750)
         (x #o452576)
         (y #o317407))
     (show m x y)
     (let ((z (logand (logxor x y) m)))
       (setq x (logxor z x))
       (setq y (logxor z y))
       (show m x y))))
 |>  m = #o007750
 |>  x = #o452576
 |>  y = #o317407
 |>  
 |>  m = #o007750
 |>  x = #o457426
 |>  y = #o312557
⇒  NIL

Exceptional Situations

Should signal type-error if any argument is not an integer.

See Also

boole

Notes

(logbitp k -1) returns true for all values of k.

Because the following functions are not associative, they take exactly two arguments rather than any number of arguments.

 (lognand n1 n2) ≡ (lognot (logand n1 n2))
 (lognor n1 n2) ≡ (lognot (logior n1 n2))
 (logandc1 n1 n2) ≡ (logand (lognot n1) n2)
 (logandc2 n1 n2) ≡ (logand n1 (lognot n2))
 (logiorc1 n1 n2) ≡ (logior (lognot n1) n2)
 (logiorc2 n1 n2) ≡ (logior n1 (lognot n2))
 (logbitp j (lognot x)) ≡ (not (logbitp j x))