nconc
&rest lists ⇒ concatenated-list
list | each but the last must be a list (which might be a dotted list but must not be a circular list); the last list may be any object. |
concatenated-list | a list. |
Returns a list that is the concatenation of lists.
If no lists are supplied, (nconc)
returns nil.
nconc is defined using the following recursive relationship:
(nconc) ⇒ ()
(nconc nil . lists) ≡ (nconc . lists)
(nconc list) ⇒ list
(nconc list-1 list-2) ≡ (progn (rplacd (last list-1) list-2) list-1)
(nconc list-1 list-2 . lists) ≡ (nconc (nconc list-1 list-2) . lists)
(nconc) ⇒ NIL
(setq x '(a b c)) ⇒ (A B C)
(setq y '(d e f)) ⇒ (D E F)
(nconc x y) ⇒ (A B C D E F)
x ⇒ (A B C D E F)
Note, in the example, that the value of x
is now different,
since its last cons
has been rplacd’d to the value of y
.
If (nconc x y)
were evaluated again,
it would yield a piece of a circular list,
whose printed representation would be
(A B C D E F D E F D E F ...)
, repeating forever;
if the *print-circle* switch were non-nil,
it would be printed as (A B C . #1=(D E F . #1#))
.
(setq foo (list 'a 'b 'c 'd 'e)
bar (list 'f 'g 'h 'i 'j)
baz (list 'k 'l 'm)) ⇒ (K L M)
(setq foo (nconc foo bar baz)) ⇒ (A B C D E F G H I J K L M)
foo ⇒ (A B C D E F G H I J K L M)
bar ⇒ (F G H I J K L M)
baz ⇒ (K L M)
(setq foo (list 'a 'b 'c 'd 'e)
bar (list 'f 'g 'h 'i 'j)
baz (list 'k 'l 'm)) ⇒ (K L M)
(setq foo (nconc nil foo bar nil baz)) ⇒ (A B C D E F G H I J K L M)
foo ⇒ (A B C D E F G H I J K L M)
bar ⇒ (F G H I J K L M)
baz ⇒ (K L M)
The lists are modified rather than copied.