sqrt
number ⇒ root
isqrt
natural ⇒ natural-root
sqrt and isqrt compute square roots.
sqrt returns the principal square root of number. If the number is not a complex but is negative, then the result is a complex.
isqrt returns the greatest integer less than or equal to the exact positive square root of natural.
If number is a positive rational, it is implementation-dependent whether root is a rational or a float. If number is a negative rational, it is implementation-dependent whether root is a complex rational or a complex float.
The mathematical definition of complex square root (whether or not minus zero is supported) follows:
(sqrt x) = (exp (/ (log x) 2))
The branch cut for square root lies along the negative real axis, continuous with quadrant II. The range consists of the right half-plane, including the non-negative imaginary axis and excluding the negative imaginary axis.
(sqrt 9.0) ⇒ 3.0
(sqrt -9.0) ⇒ #C(0.0 3.0)
(isqrt 9) ⇒ 3
(sqrt 12) ⇒ 3.4641016
(isqrt 12) ⇒ 3
(isqrt 300) ⇒ 17
(isqrt 325) ⇒ 18
(sqrt 25)
⇒ 5
OR⇒ 5.0
(isqrt 25) ⇒ 5
(sqrt -1) ⇒ #C(0.0 1.0)
(sqrt #c(0 2)) ⇒ #C(1.0 1.0)
The function sqrt should signal type-error if its argument is not a number.
The function isqrt should signal type-error if its argument is not a non-negative integer.
The functions sqrt and isqrt might signal arithmetic-error.
(isqrt x) ≡ (values (floor (sqrt x)))
but it is potentially more efficient.